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Modifications of the Griesmer Bound
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Communications Systems Research Section

The Griesmer bound is a classical technique (developed in 1960) for estimating
the minimum length n required for a binary linear code with a given dimension
k and minimum distance d. In this article, a unified derivation of the Griesmer
bound and two new variations on it are presented. The first variation deals with
linear codes which contain the all-ones vector; such codes are quite common and are
useful in practice because of their “transparent” properties. The second variation
deals with codes that are constrained to contain a word of weight > M. In both
cases these constraints (the all-ones word or a word of high weight) can increase the
minimum length of a code with given k and d.

I. Introduction and Review of the Classical
Griesmer Bound

The key notion for the Griesmer bound is what Solomon
and Stiffler [8] called puncturing. If z = (21,...,2a) is
a binary vector of length n and if I C {1,...,n}, the
I-puncturing of z is the vector obtained by deleting the
components of z indexed by I. Thus, for example, the
{1,4} puncturing of (10101) is (011). Puncturing is thus
just a special kind of linear transformation, i.e., a projec-
tion onto certain coordinate positions, but here the tradi-
tional terminology will be retained. All of the results in
this article, old and new, are based on the following simple
combinatorial lemma.

Lemma. Let a = (ay,...,a,) be a fixed binary vector
of length n. If b = (by,..., by ) is another binary vector of
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length n, let &’ be the vector obtained by puncturing b at
the positions where a; = 1. Then

wt(b)  wt(a + b) — wt(a)

wi(p) = o2+ : (1)

Proof: Without loss of generality, take

n—w w 3

e N, e
a = 0000000 11111111

b = 0001111 11100000 (2)

a+b=0001111 00011111 )

where w = wt(a). Then, if ¢ = (z1,22,...,%,) is any
vector of length n, then &’ = (z1,...,Tn-yw). Similarly,
define the complementary puncturing of z—at the com-
ponents where a; = 0 by " = (Zp-w+1, - .,Zn), so that
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wt(z) = wt(z’") + wt(z”) for any vector z. Applying this
rule to the second and third line of Eq. (2) yields, noting
that wt[(a + b)'] = wt(b') and wt{(a + b)"] = w — wt(d"”),

wt(d') + wt(b”) = wt(b)
wt(b') + [w — wt(b"”)] = wt(a + b)

Adding these two equations, 2wt(d'}) = wt(b) + wt(a + b)
— wt(a), which is the same as Eq. (1). )

In the rest of the article, the MacWilliams—Sloane ([6],
Section 1.1) terminology of an [n, k, d] code is used to de-
scribe a binary linear code with length n, dimension k, and
minimum distance d.

Theorem 1. Let C be an [n, k, d] code, and let a be a
codeword of weight d. Let C’ be the code obtained from
C by puncturing each codeword at the coordinates where
a; = 1. Then C’" is an [n—d, k—1,d'} code with d' > [d/2].

Proof: The code C’ is by definition of length n — d,
since there are d punctured coordinates. To compute the
dimension of C’, use the fact that the puncturing map-
ping P from C to C' is a linear transformation, so that
rank(P) + nullity(P) = dim(C) = k ({4], Theorem 3.1.3).
To find nullity(P), examine the set of codewords z € C
such that z/ = 0. If 2’ is such a codeword, then the 1’s of
z must be confined to the d coordinates where a is nonzero,
so that either £ = 0 or wt(a + z) < d. But since ¢ + a
is a codeword and d is the minimum weight of C, it fol-
lows that 2 +a = 0, i.e.,, £ = a. Thus, there are just
two words in C that, when punctured, yield 0—0 and a,
and so nullity(P) = 1, so that rank(P), i.e., the dimen-
sion of C’, is one less than the dimension of C, i.e., k — 1.
Finally, if b is an arbitrary codeword of C not equal to
0 or a, wt(b+ a) > d = wt(a), and so by the Lemma,
wt(d') > [wt(b)/2] > [d/2]. Thus, every nonzero word in
C’ has weight > [d/2]. a

Let n(k,d) be the minimum length of a binary code
with Hamming distance > d and dimension k. The original

Griesmer bound can now be stated and proven ([3] or [6],
p. 546).

Theorem 2 (Griesmer, 1960). If k£ > 2, then
n(k,d) > d+ n(k - 1,[d/2])

Proof: Let C be an [n,k,d] binary linear code with
n = n(k,d). Then the code C’ described in Theorem 1
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is an [n — d,k — 1,d'] code with &' > [d/2], and so its
length must be > n(k — 1,[d/2]). Hence, n(k,d) —d >
n(k —1,[d/2]). a

Corollary 1 (Griesmer, 1960).

n(k,d) > d+[d/2) +[d/2%] +---+[d/2*"1]  fork>1

Proof: This follows from Theorem 2, combined with
the self-evident result that n(1,d) = d for all d > 1, with
mathematical induction, and that [[£]/2] = [z/2] (see
[1] or [5], solution to exercise 1.2.4, p. 476). a

Il. The Griesmer Bound for Codes
Containing the All-Ones Word

In many applications, it is necessary to consider codes
that contain the all-ones vector, e.g., “transparent codes”
for synchronizing phase-shift-keyed-modulated data ([2],
Section 6.6.1), or for synthesizing good finite state-codes
[7]. It is therefore useful and interesting to study the pos-
sible loss in performance induced by requiring a code to
contain the all-ones vector. Thus let N(k,d) denote the
minimum length of a binary code with Hamming distance
> d and dimension k that contains the all-ones vecior.

Theorem 3. If k > 2, then (cf. Theorem 2).
N(k,d) > d+ N(k —1,[d/2])

Proof: Let C be an [n, k, d] binary linear code contain-
ing the all-ones vector with n = N(k,d). Then the punc-
tured code C’ described in Theorem 2is an [n—d, k—1,d’]
code that contains the all-ones vector (since puncturing
an all-ones vector leaves another all-ones vector) with
d’" > [d/2], and so its length must be > N(k —1,d - 1).
Hence, N(k,d)—d > N(k —1,[d/2]). a

Theorem 4. Both N(1,d) = d and N(2,d) = 2d for
alld > 1.

Proof: For the k& = 1 result, take as the generator
matrix

G=(1 1 - 1)

For the k = 2 result, note that an [n,2,d] code with the
all-ones vector has a 2 X n generator matrix of the form



11 --- 11
G=
00 --- 11
Denote by no the number of columns of G of the form (é)

and by n; the number of columns of the form (7). Then,
since the code has minimum weight d, it must follow that
ny > d and ng > d. Hence, n = ng 4+ n; > 2d. On the
other hand, by taking np = d and n; = d, one obtains a
[2d,2, d] code containing the all-ones vector. a

Theorem 5. If k£ > 3, then
N(k,d) > d+[d/2] + [d/2%] + -+ 2[d/257%]  (3)

Proof: This follows by mathematical induction on &,
using Theorem 3 as the boundary value and Theorem 4
as the induction step, again with the help of the result
[Tz]/2] = [=/2] cited above. a

Examples. Let ¥ = 3 and d = 3. Then by the
Corollary 1 and Theorem 5, n(3,3) > 3+ 2+ 1 = 6 and
N(3,3) >3+42+2=7. In both cases the bound is sharp,
since there is a [6, 3, 3] code, namely, a punctured (7,3, 4]
simplex code with generator matrix

110100
G =1 011010

001101
and a [7,3,3] code with the all-ones word, namely,

1111111
G = | 1000011

0100101

Since N(5,9) > 9+5+3+2-2 = 21, there is no [20, 5, 9]
code with the all-ones word. There is, however, a [21,5, 9]
code with the all-ones word, obtained from the [186,5, 8]
biorthogonal code by repeating the information bits.

Theorem 6.

k+1
N(k,?):{

k+2

if & 1s odd

if kis even

Proof: Since there is plainly no [k, k, 2] code, with or
without the all-ones word, it follows that N(k,2) > k+1
for all k. The only [k + 1, k,2] code has the parity-check

matrix
k+1
— | —A—
" <11«~~1)

This code contains the all-ones vector if and only if &
is odd, which proves that N(k,2) = k+ 1 if k£ is odd,
and N(k,2) > k + 2 if k is even. If k is even, there is a
[k+2, k, 2] code containing the all-ones word, with a parity-
check matrix (illustrated for k = 6)

11111111
H =
11000000
so that N(k,2) = k+ 2 when k is even, as asserted. ]

Corollary 2.

k+3 ifkiseven
N(k,3) >
k+4 if kisodd
Proof: From Theorem 3, N(k,3) > 3+ N(k - 1,2).
The result now follows from Theorem 6. a

lll. The Griesmer Bound for Codes
Containing a Word of Bounded Weight

As another variation on the Griesmer bound, let
N(k,d, M) denote the length of the shortest [n,k,d] bi-
nary linear code that contains a word of weight > M.

Theorem 7.
N(k,d,M)>d+ N(k—1,[d/2],[M/2}])

Proof: Let C be an [n, k, d] code containing a word of
weight > M. As in the proof of Theorem 2, consider the
code C’, which is an [n —d, k — 1, d’] code with d' > [d/2].
Now let b be a word of weight > M in C. Then, by the
Lemma, wt(b’) > [wt(b)/2] > [M/2]. Thus, C’ is an
[n—d, k—1,d'] code with d' > [d/2] containing a word of
weight > [M/2],ie., n—d > N(k—1,[d/2], [M/2]).
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Theorem 8. If M > d and & > 2, (7, 3,4] code with a word of weight 5 or more, an appeal to
Theorem 8 shows that N(3,4,5) > 4+ [4/2] + [5/4] = 8.
There is an [8, 3,4] code with a word of weight 6, namely,

2

N(k,d,M)>d+[d/2] + [d/2°] + - the code with generator matrix
+[d/257%] + [M/2571 11111100
G =1 00001111

Proof: This follows from Theorem 3 and the boundary
value N(1,d, M) = max(M,d). d
11001010

Example. According to Theorem 5, n(3,4) > 7, and
there is a [7,3,4] code, i.e., the simplex code. However, but it is unknown whether there is an [8, 3,4] code with a

this code has words only of weight 4. If one looks for a word of weight 5.
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